Determine an equation of the line that passes through the points (3, 4) and (9, -2).

First, find the slope of the line.
\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 4}{9 - 3} = \frac{-6}{6} = -1 \]

Next, substitute \(m = -1 \), \(x = 3 \) and \(y = -4 \) into \(y = mx + b \).

\[-4 = (-1)(3) + b \]
\[-4 = -3 + b \]
\[b = -1 \]

An equation of the line is \(y = -x - 5 \).

Equation of a Line Given Two Points

Note that we obtain the same answer if we use \(x = 9 \) and \(y = -2 \), since both points are on the line.

\[-2 = \frac{1}{2}(9) + b \]
\[-2 = 4.5 + b \]
\[-6.5 = b \]

When choosing a point to substitute into \(y = mx + b \), choose the one that is easiest to work with. Small values, positive values, or values that “cancel out” fractions are often your best bet.
Equation of a Line Given Two Points

Example

Determine an equation of the line that passes through the points \((-2, -1)\) and \((0, 7)\).

Note that the second point has an \(x\)-coordinate of zero, indicating that it is the \(y\)-intercept. Thus, we just need to find the slope of the line.

\[
m = \frac{7 - (-1)}{0 - (-2)} = \frac{8}{2} = 4
\]

Therefore, an equation of the line is \(y = 4x + 7\). Remember to keep things simple, and look for shortcuts.

Equation of a Line Given Two Points

Example

Determine the standard form equation of the line that passes through the points \((5, 7)\) and \((11, 10)\).

Start by determining the slope of the line.

\[
m = \frac{10 - 7}{11 - 5} = \frac{1}{2}
\]

Next, find the \(y\)-intercept of the line.

\[
7 = \frac{1}{2}(5) + b
\]

\[
14 = 5 + 2b
\]

\[
9 = 2b
\]

\[
\frac{9}{2} = b
\]

The slope-intercept equation of the line is \(y = \frac{1}{2}x + \frac{9}{2}\).

Convert this to standard form by eliminating any fractional values and gathering the \(x\) and \(y\) terms.

\[
y = \frac{1}{2}x + \frac{9}{2}
\]

\[
2y = x + 9
\]

\[
-x + 2y = 9
\]

\[
x - 2y = -9
\]

The standard form equation of the line is \(x - 2y = -9\).

Questions?