

We want to know $\frac{dh}{dt}$, and are given $\frac{dV}{dt} = 5$.

Since the radius is twice the height, r = 2h. The volume of a cone is given by $V = \frac{1}{3}\pi r^2 h$, or $V = \frac{4}{3}\pi h^3$

after substitution. Therefore, $\frac{dV}{dh} = 4\pi h^2$.

J. Garvin — Related Rates Slide 4/11

J. Garvin — Related Rates Slide 3/11

Related Rates

Using the chain rule,

When $A = 60^{\circ}$, $\sin A = \frac{\sqrt{3}}{2}$ and $\cos A = \frac{1}{2}$.

We can evaluate the derivative,

Thus, $a^2 = 625 - 600 \cdot \frac{1}{2} = 325$, so $a = \sqrt{325} = 5\sqrt{13}$.

 $\frac{da}{dt} = \frac{600 \cdot \frac{\sqrt{3}}{2}}{5\sqrt{13}} \\ = \frac{60\sqrt{39}}{13} \text{ cm/s}$

$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$
$$5 = 4\pi h^2 \cdot \frac{dh}{dt}$$
$$\frac{dh}{dt} = \frac{5}{4\pi h^2}$$

When the radius is 20 m, the height is 10 m. Substitute into the above equation.

$$\frac{\frac{dh}{dt}}{\left|_{h=10}\right|} = \frac{5}{4\pi \cdot 10^2}$$
$$= \frac{1}{80\pi} \text{ m/s}$$

J. Garvin — Related Rates Slide 5/11

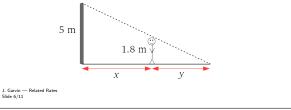
Related Rates

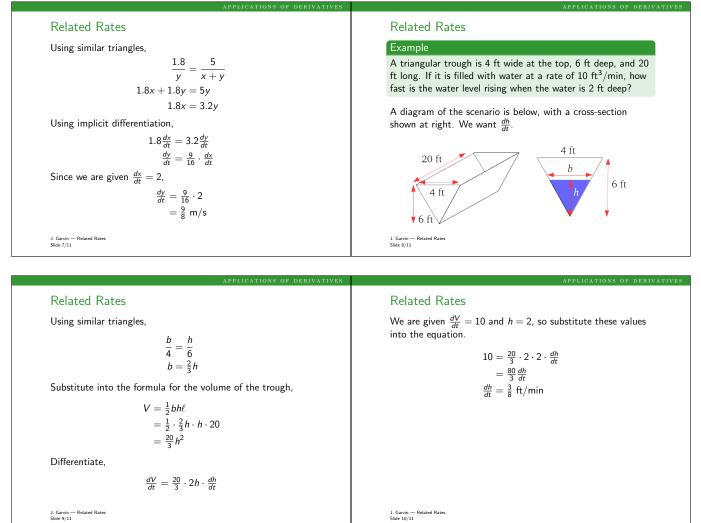
Example

A 1.8 m tall man casts a shadow as he walks away from a 5 m tall lamp post at a rate of 2 m/s. How fast is the shadow growing?

TIONS OF DERIVATIVES

A diagram of the scenario is below, where x is the distance from the man to the lamp post and y the distance from the man to the tip of his shadow.





J. Garvin — Related Rates Slide 9/11

