|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | APPLICATIONS OF DERIV                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Related Rates                                                                                                                                                                                                                                      |
| MCV4U: Calculus & Vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Related rates are usually one of the trickier concepts in high school calculus.                                                                                                                                                                    |
| Related Rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Typically, we will want to determine (or evaluate) a rate of change for some quantity, which is based on one or more other quantities.                                                                                                             |
| Part 1<br>J. Garvin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Since related rates often involve one quantity, $y$ , that depends on another, $u$ , which is based on a third quanity, $x$ , the chain rule is used.                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $rac{dy}{dx} = rac{dy}{du} \cdot rac{du}{dx}$                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A good strategy is to list all given quantities, as well as those<br>that we need to find, and try to find links between them.                                                                                                                     |
| Slide 1/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J. Garvin — Related Rates                                                                                                                                                                                                                          |
| APPLICATIONS OF DERIVATIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | APPLICATIONS OF DERIV                                                                                                                                                                                                                              |
| APPLICATIONS OF DERIVATIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | APPLICATIONS OF DERIV                                                                                                                                                                                                                              |
| APPLICATIONS OF DERIVATIVES<br>Related Rates<br>Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | APPLICATIONS OF DERIV<br>Related Rates<br>Putting all of this together,                                                                                                                                                                            |
| Related Rates<br>Example<br>A spherical balloon is being filled with helium at a rate of 10<br>$cm^3/s$ . At what rate is the radius increasing when the radius<br>is 5 cm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                | Related Rates<br>Putting all of this together,<br>$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $10 - 100\pi \cdot \frac{dr}{dt}$                                                                                                            |
| Related Rates<br><b>Example</b><br>A spherical balloon is being filled with helium at a rate of 10<br>$cm^3/s$ . At what rate is the radius increasing when the radius<br>is 5 cm?<br>We want to know the change in the balloon's radius with                                                                                                                                                                                                                                                                                                                                          | Related Rates<br>Putting all of this together,<br>$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $10 = 100\pi \cdot \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{1}{10\pi}$                                                                          |
| Related Rates<br>Example<br>A spherical balloon is being filled with helium at a rate of 10<br>cm <sup>3</sup> /s. At what rate is the radius increasing when the radius<br>is 5 cm?<br>We want to know the change in the balloon's radius with<br>respect to time, or $\frac{dr}{dt}$ .                                                                                                                                                                                                                                                                                               | Related Rates<br>Putting all of this together,<br>$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $10 = 100\pi \cdot \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{1}{10\pi}$ Therefore, the radius is increasing at a rate of $\frac{1}{10\pi}$ cm/s. |
| Related Rates<br>Example<br>A spherical balloon is being filled with helium at a rate of 10<br>cm <sup>3</sup> /s. At what rate is the radius increasing when the radius<br>is 5 cm?<br>We want to know the change in the balloon's radius with<br>respect to time, or $\frac{dr}{dt}$ .<br>We are given the change in volume with respect to time,<br>$\frac{dV}{dt} = 10$ .                                                                                                                                                                                                          | Related Rates<br>Putting all of this together,<br>$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $10 = 100\pi \cdot \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{1}{10\pi}$ Therefore, the radius is increasing at a rate of $\frac{1}{10\pi}$ cm/s. |
| Related Rates<br>Example<br>A spherical balloon is being filled with helium at a rate of 10<br>cm <sup>3</sup> /s. At what rate is the radius increasing when the radius<br>is 5 cm?<br>We want to know the change in the balloon's radius with<br>respect to time, or $\frac{dr}{dt}$ .<br>We are given the change in volume with respect to time,<br>$\frac{dV}{dt} = 10$ .<br>The volume of the balloon is given by $V = \frac{4}{3}\pi r^3$ , so<br>$\frac{dV}{dr} = 4\pi r^2$ .                                                                                                   | Related Rates<br>Putting all of this together,<br>$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $10 = 100\pi \cdot \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{1}{10\pi}$ Therefore, the radius is increasing at a rate of $\frac{1}{10\pi}$ cm/s. |
| Related Rates<br>Example<br>A spherical balloon is being filled with helium at a rate of 10<br>cm <sup>3</sup> /s. At what rate is the radius increasing when the radius<br>is 5 cm?<br>We want to know the change in the balloon's radius with<br>respect to time, or $\frac{dr}{dt}$ .<br>We are given the change in volume with respect to time,<br>$\frac{dV}{dt} = 10$ .<br>The volume of the balloon is given by $V = \frac{4}{3}\pi r^3$ , so<br>$\frac{dY}{dr} = 4\pi r^2$ .<br>Since the radius of the balloon is 5 cm,<br>$\frac{dV}{dr}\Big _{r=5} = 4\pi (5)^2 = 100\pi$ . | Related Rates<br>Putting all of this together,<br>$\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $10 = 100\pi \cdot \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{1}{10\pi}$ Therefore, the radius is increasing at a rate of $\frac{1}{10\pi}$ cm/s. |

OF DERIVATIV

# Related Rates

Example An ice cube melts without changing shape at a uniform rate of 4 cm<sup>3</sup>/min. What is the rate of change of its surface area when the volume of the cube is  $125 \text{ cm}^3$ ?

We want to know the change in the cube's surface area with respect to time, or  $\frac{dA}{dt}.$ 

We are given the change in volume with respect to time,  $\frac{dV}{dt} = -4$ . Note that the value is negative, since the volume is decreasing.

The volume of the cube is given by  $V = s^3$ , so  $\frac{dV}{ds} = 3s^2$ .

J. Garvin — Related Rates Slide 5/12

### **Related Rates**

Using the chain rule,

$$\frac{dV}{dt} = \frac{dV}{ds} \cdot \frac{ds}{dt}$$
$$-4 = 3s^2 \cdot \frac{ds}{dt}$$
$$\frac{ds}{dt} = -\frac{4}{3s^2}$$

ICATIONS OF DERIVATIVE

The surface area of the cube is given by  $A = 6s^2$ , so  $\frac{dA}{ds} = 12s$ .

Using the chain rule again,

$$\frac{dA}{dt} = \frac{dA}{ds} \cdot \frac{ds}{dt}$$
$$= 12s \left(-\frac{4}{3s^2}\right)$$
$$= -\frac{16}{s}$$

When the volume is 125 cm<sup>3</sup>, then s = 5, so  $\frac{dA}{dt}\Big|_{s=5} = -\frac{16}{5} = -3.2 \text{ cm}^2/\text{s}.$ J. Gavin- Related Rates Side 6/12

## Related Rates

#### Example

Two students leave school at the same time. Gabriella walks north at 1.8 m/s, while Alexander walks east at 1.2 m/s. How fast is the distance between them changing after 5 minutes?

The two paths form a right triangle as shown, where x is the distance Gabriella walks and y the distance Alexander walks.



### **Related Rates**

J. Garvin — Related Rates Slide 7/12

Using the Pythagorean Theorem, we can calculate  $\boldsymbol{h}$  at 5 minutes.

$$h = \sqrt{540^2 + 360^2} = 180\sqrt{13}$$

Using this value,

$$\frac{dh}{dt} = \frac{2808}{2 \cdot 180\sqrt{13}} \\ = \frac{3\sqrt{13}}{5}$$

Therefore, the distance between Gabriella and Alexander is increasing by approximately 2.16 m/s at 5 minutes.

J. Garvin — Related Rates Slide 9/12

### **Related Rates**

Using  $h = 180\sqrt{13}$  and t = 300 as before, evaluate  $\frac{dh}{dt}$ .

$$\frac{dh}{dt} = \frac{9.36 \cdot 300}{2 \cdot 180\sqrt{13}}$$
$$= \frac{3\sqrt{13}}{5}$$
$$\approx 2.16 \text{ m/s}$$

Either method is acceptable. In some cases, one method is easier than another.

After 5 minutes, Gabriella has walked  $300 \cdot 1.8 = 540$  m, while Alexander has walked  $300 \cdot 1.2 = 360$  m.

**Related Rates** 

We are given both  $\frac{dx}{dt}=1.8$  and  $\frac{dy}{dt}=1.2,$  and we want to know  $\frac{dh}{dt}.$ 

Using implicit differentiation,

 $x^{2} + y^{2} = h^{2}$   $2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 2h \frac{dh}{dt}$   $2 \cdot 540 \cdot 1.8 + 2 \cdot 360 \cdot 1.2 = 2h \frac{dh}{dt}$   $2808 = 2h \frac{dh}{dt}$   $\frac{dh}{dt} = \frac{2808}{2h}$ 

J. Garvin — Related Rates Slide 8/12

## Related Rates

Alternatively, we can solve the problem by expanding instead. Since Gabriella walks at a rate of 1.8 m/s, and Alexander walks at 1.2 m/s, expressions for their distances travelled are 1.8t and 1.2t respectively.

By the Pythagorean Theorem,

$$h^{2} = (1.8t)^{2} + (1.2t)^{2}$$
$$= 3.24t^{2} + 1.44t^{2}$$
$$= 4.68t^{2}$$

 $=\frac{9.36t}{2h}$ 

Using implicit differentiation,  $2h\frac{dh}{dt} = 9.36t$ 

J. Garvin — Related Rates Slide 10/12



J. Garvin — Related Rates Slide 11/12