LIMIT

LIMITS

MCV4U: Calculus & Vectors

Limits of Functions

J. Garvin

Limits

What is the value of $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots$?

J. Garvin — Limits of Functions

Slide 1/20

Limits

If we use the first four terms of the sequence, then $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{15}{16}.$

If we increase the number of terms, we obtain the following:

Terms	5	6	7	 20
Sum	31 32	63 64	127 128	 1048575 1048576

As the number of terms increases, the sum approaches $1.\ \mbox{We}$ call this concept a $\emph{limit}.$

Limits

A limit is some value that a function (or sequence) approaches, as the input (or index) approaches some value.

J. Garvin — Limits of Functions

Limits

Example

Determine the value of $\lim_{x \to a} (x - 3)$.

This is a linear function, f(x) = x - 3, whose graph is below.

J. Garvin — Limits of Functions Slide 4/20

Limits

The expression $\lim_{x\to 4} (x-3)$ means "what value does the linear function approach as x gets closer to 4?"

By observation, as $x \to 4$, $f(x) \to 1$.

Therefore, we state that $\lim_{x \to 3} (x - 3) = 1$.

In this example, it is also true that f(4)=1, but this does not always need to be true.

Limits

Example

Determine the value of $\lim_{x\to\infty} \frac{1}{x}$

This time, we are not approaching a specific \emph{value} , but ∞ itself

Recall that the end behaviour of the function $\frac{1}{x}$ is defined by values of x that approach ∞ .

Thus, the question can be restated as "does the end behaviour of $f(x) = \frac{1}{x}$ cause it to approach a specific value?"

Again, a graph of the function (or a knowledge of its basic properties) is useful.

J. Garvin — Limits of Functions

J. Garvin — Limits of Function

LIMITS

Limits

The graph of $f(x)=\frac{1}{x}$ has a horizontal asymptote at f(x)=0, and as $x\to\infty$, $f(x)\to0$.

While the function never actually takes on a value of 0, it gets infinitesimally close to 0 and we say that $\lim_{x\to\infty}\frac{1}{x}=0.$

J. Garvin — Limits of Function

Limits

Example

Determine the value of $\lim_{x\to 0} \frac{x-3}{x^2}$

While it is possible to graph this rational function, an alternative method is to use a table of values that become closer and closer to 0.

First, check values that are less than 0.

$$x$$
 -0.1 -0.01 -0.001 ...
 $f(x)$ -310 -30100 -3 × 10⁶ ...

f(x) decreases rapidly, the closer it gets to 0. It appears that as $x \to 0$, $f(x) \to -\infty$.

J. Garvin — Limits of Functions Slide 8/20

Limits

Next, check values that are greater than 0.

X	 0.001	0.01	0.1
f(x)	 -3×10^6	-30100	-310

Again, f(x) decreases rapidly and as $x \to 0$, $f(x) \to -\infty$. Since all values suggest that f(x) continues to decrease the closer it gets to 0, we say that $\lim_{x\to 0} \frac{x-3}{x^2} = -\infty$.

Remember that ∞ is not a value. A function can approach $\infty,$ but will never reach it!

J. Garvin — Limits of Function Slide 9/20

One-Sided Limits

In the last example, we tested values close to a specific value.

A limit that approaches a certain value "from the left" or "from the right" is called a *one-sided limit*.

Left- and Right-Handed Limits

For a function f(x), we denote as follows:

- the limit as x approaches a from the left, $\lim_{x\to a^-}f(x)$, is called the *left-handed limit*
- the limit as x approaches a from the right, $\lim_{x\to a^+} f(x)$, is called the *right-handed limit*

The values of the left- and right-handed limits may be different, depending on the function, or they may not exist at all.

J. Garvin — Limits of Function Slide 10/20

One-Sided Limits

Example

For the function below, state the values of $\lim_{x\to 3^-}f(x)$ and $\lim_{x\to 3^+}f(x),$ if they exist.

J. Garvin — Limits of Functions Slide 11/20

One-Sided Limits

Moving from the left, $\lim_{x\to 3^-} f(x) = 2$.

Moving from the right, $\lim_{x \to 3^+} f(x) = 2$.

In this case, the left- and right-handed limits are equal. This is not always true.

J. Garvin — Limits of Functions Slide 12/20

LIMIT

One-Sided Limits

Example

For the function below, state the values of $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^+} f(x)$, if they exist.

J. Garvin — Limits of Functions Slide 13/20

One-Sided Limits

Moving from the right, $\lim_{x\to 0^+} f(x) = 0$.

It is not possible to approach 0 from the left, however, since f(x) is not defined for any x < 0.

Therefore, $\lim_{x\to 0^-} f(x)$ does not exist.

J. Garvin — Limits of Functions Slide 14/20

LIMI

Limit of a Function

We can define the limit of a function using left- and right-handed limits.

Limit of a Function

Given a function f(x), the limit as $x \to a$ exists if the leftand right-handed limits exist and are equal. Mathematically, $\lim_{x \to a} f(x) = L$ if $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$.

Using this definition, the limit of f(x) as $x\to 0$ in the previous example does not exist, since $\lim_{x\to 0^-} f(x)$ does not exist

A more formal definition of limits involving small quantities δ and ϵ is typically covered in first-year university courses, but this definition will suit us for now.

J. Garvin — Limits of Functions Slide 15/20

Example

Limit of a Function

Determine $\lim_{x\to 2} f(x)$ for f(x) below, if it exists.

Since $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 4$, then $\lim_{x\to 2} f(x) = 4$.

Limit of a Function

Example

Determine $\lim_{x \to -1} f(x)$ for f(x) below, if it exists.

Since $\lim_{x\to -1^-}f(x)=5$ and $\lim_{x\to -1^+}f(x)=1$, then $\lim_{x\to -1}f(x)$ does not exist.

Limit of a Function

Example

Determine $\lim_{x \to 1} f(x)$ for f(x) below, if it exists.

Since $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} f(x) = 1$, then $\lim_{x\to 1} f(x) = 1$.

1. Gardin — Limits of Functions Sides 18/20

Limit of a Function

Note that f(x) is discontinuous at x=1, and that f(1)=4. We will talk about this in more detail soon.

Limits describe what is happening around a particular value. There is no requirement that the limit of the function as x approaches a is the same value as f(a).

J. Garvin — Limits of Functions Slide 19/20

Questions?

J. Garvin — Limits of Functions