

Limits	
Limits	Limits
The expression $\lim _{x \rightarrow 4}(x-3)$ means "what value does the linear function approach as x gets closer to 4?"	Example
	Determine the value of $\lim \frac{1}{-}$.
By observation, as $x \rightarrow 4, f(x) \rightarrow 1$.	Determe the valu $\lim ^{\text {a }}$
Therefore, we state that $\lim _{x \rightarrow 4}(x-3)=1$. In this example, it is also true that $f(4)=1$, but this does not always need to be true.	This time, we are not approaching a specific value, but ∞ itself.
	Recall that the end behaviour of the function $\frac{1}{x}$ is defined by values of x that approach ∞.
	Thus, the question can be restated as "does the end behaviour of $f(x)=\frac{1}{x}$ cause it to approach a specific value?"
	Again, a graph of the function (or a knowledge of its basic properties) is useful.

Limits

The graph of $f(x)=\frac{1}{x}$ has a horizontal asymptote at $f(x)=0$, and as $x \rightarrow \infty, f(x) \rightarrow 0$.
While the function never actually takes on a value of 0 , it gets infinitesimally close to 0 and we say that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.

Limits

Example

Determine the value of $\lim _{x \rightarrow 0} \frac{x-3}{x^{2}}$

While it is possible to graph this rational function, an alternative method is to use a table of values that become closer and closer to 0 .
First, check values that are less than 0 .

x	-0.1	-0.01	-0.001	\ldots
$f(x)$	-310	-30100	-3×10^{6}	\ldots

$f(x)$ decreases rapidly, the closer it gets to 0 . It appears that as $x \rightarrow 0, f(x) \rightarrow-\infty$.

Limits

Next, check values that are greater than 0 .

x	\cdots	0.001	0.01	0.1
$f(x)$	\cdots	-3×10^{6}	-30100	-310

Again, $f(x)$ decreases rapidly and as $x \rightarrow 0, f(x) \rightarrow-\infty$.
Since all values suggest that $f(x)$ continues to decrease the closer it gets to 0 , we say that $\lim _{x \rightarrow 0} \frac{x-3}{x^{2}}=-\infty$.
Remember that ∞ is not a value. A function can approach ∞, but will never reach it!

1. Ganin - Limits of Functions
side $9 / 20$

One-Sided Limits

In the last example, we tested values close to a specific value.
A limit that approaches a certain value "from the left" or
"from the right" is called a one-sided limit.

Left- and Right-Handed Limits

For a function $f(x)$, we denote as follows:

- the limit as x approaches a from the left, $\lim _{x \rightarrow a^{-}} f(x)$, is called the left-handed limit
- the limit as x approaches a from the right, $\lim _{x \rightarrow a^{+}} f(x)$, is called the right-handed limit

The values of the left- and right-handed limits may be different, depending on the function, or they may not exist at all.

Limit of a Function
Note that $f(x)$ is discontinuous at $x=1$, and that $f(1)=4$. We will talk about this in more detail soon. Limits describe what is happening around a particular value. There is no requirement that the limit of the function as x approaches a is the same value as $f(a)$. Questions?

