
ICS3U: Substrings
Related to strings are substrings. A substring is a smaller string made up of adjacent characters taken
from a larger string. For instance, “cat” is a substring of “catatonic”, whereas “dog” is not a substring of
“dropping”, even though “dropping” contains all of the letters in “dog”.

We can always for if a particular substring is contained in a string using in. If the substring is in the
string, the result is True. Otherwise, it is False.

>>> s = "computer"
>>> "put" in s
True
>>> "opt" in s
False

The code below asks the user to enter a string, then determines if it contains a lower- or uppercase ‘a’.

s = input("Enter a string: ")
if "a" in s or "A" in s:
 print("The string contains an A.")
else:
 print("The string contains no A's.")

To count the number of occurrences of a substring in a string, use the count method. Unlike some of
the earlier methods, like isalpha, count requires a substring as an argument. Only one substring can
be checked at a time – attempting to use more than one argument will cause an error.

>>> s = "AbcAdeAfg"
>>> s.count("A")
3
>>> s.count("A", "B")
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
TypeError: slice indices must be integers or None or have an __index__ method

Note that count will only count the number of non-overlapping substrings in a string. The code below
begins counting from the left. Once the first “AA” substring is found, the remaining ‘A’ does not have a
match, so the count is 1 rather than 2.

>>> s="AAA"
>>> s.count("AA")
1

Let’s modify the earlier program to not only test a string for the presence of ‘A’s, but to count them too.

s = input("Enter a string: ")
total_A = s.count("a") + s.count("A")
if total_A > 0:
 print("The string contains", total_A, "A's.")
else:
 print("The string contains no A's.")

To determine whether or not a string begins or ends with a specific substring, Python provides the
startswith and endswith methods. These also require single substring arguments.

>>> s = "hello"
>>> s.startswith("he")
True
>>> s.endswith("zzz")
False
>>> s.endswith("O")
False

Remember that to the Python interpreter, an uppercase letter is not the same as its lowercase
equivalent.

While in can tell us if a given substring exists in a string, sometimes we want to know where in the
string that substring is located. There are a number of methods that will determine the location of a
substring. The most direct way to find the location of a given substring is to use find. If a substring is
found, the index of the first character of the substring is returned. If the substring does not exist in the
string, a value of -1 is returned instead. This does not imply that the substring begins at the last
character! It is just a value to inform you that the substring does not exist.

>>> s = "programming"
>>> s.find("ram")
4
>>> s.find("ewe")
-1

The rfind method does the same thing, but searches a string from right-to-left instead. This can be
useful for finding the last occurrence of a substring. Note that the value returned is still the first
(leftmost) character of the substring.

>>> s = "papaya"
>>> s.rfind("pa")
2

Both find and rfind can take arguments specifying starting and ending indices to check. Anything
outside of these bounds is ignored and, as usual, the stop index is not included.

>>> s = "humuhumunukunukuapua'a"
>>> s.find("nuk")
8
>>> s.find("nuk", 9)
12
>>> s.find("nuk", 5, 10)
-1

The index method does essentially the same thing as find, but returns an error instead of -1 if the
substring is not found. This is useful if you are writing a program that handles exceptions. It also has
the added benefit that it is compatible with other sequence types, such as tuples and lists, for which
there is no find method.

>>> s = "my fancy string"
>>> s.index("abc")
Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 s.index("abc")
ValueError: substring not found

If you are determined to use index instead of find (and there are several good reasons to do so), a
work-around to prevent this run-time error is to test for a substring's existence using in before
attempting to determine its location.

string = input("Enter a string: ")
sub = input("Enter a substring: ")
if sub in string:
 i = string.index(sub)
 print("The substring begins at index", i)
else:
 print("The substring does not exist.")

There is a right-to-left equivalent of index, called rindex, which acts in a manner similar to rfind.
Both index and rindex can take arguments specifying their starting and stopping indices.

One final method that is fairly useful is replace which, as its name suggests, replaces all occurrences of
a substring with a new substring. A third, optional argument can be used to limit the number of
replacements made. Note that this replacement is not permanent unless you explicitly assign the
altered value to a variable. In the example below, notice how s remains untouched.

>>> s = "Canada"
>>> s.replace("a", "o")
'Conodo'
>>> s
'Canada'

In the following examples, we change the value of s by overwriting it with the new values.

>>> s = "Canada"
>>> s = s.replace("a", "o")
>>> s
'Conodo'
>>> s = s.replace("ono", "ede")
>>> s
'Cededo'
>>> s.replace("ed", "ax", 1)
'Caxedo'

The replace method can be used to remove characters from a string by replacing them with an empty
string instead.

>>> s = "This string contains no i's"
>>> s = s.replace("i", "")
>>> s
"Ths strng contans no 's"

