ICS3U: Additional Mathematical
Functions

Built-In Mathematical Functions

In addition to mathematical operators like addition and exponentiation, Python also contains several
built-in mathematical functions that can be called to calculate a value. To call a function in Python,
write the name of the function, followed by a set of round brackets that contain one or more
arguments (values). For example, to calculate the absolute value of a number, you can use the built-in
abs function.

>>> abs (-5)
5

Another useful function is for rounding a value to a specified number of decimal places. This requires
two arguments: the value to be rounded, and the number of decimal places to use. This function is
called round.

>>> round(12.34567, 3)
12.346

Other handy functions are min and max. These two functions take a sequence of values, and return the
smallest and largest values respectively.

>>> min(3, 1, 7, 5)
1
>>> max (3, 1, 7, 5)
7

As we progress through this course, we will introduce additional functions and revisit other uses of
some of these mathematical functions.

Functions From the math Module

Let's say that we want to calculate the square root of 42. We know that the answer is somewhere

between 6 and 7, since 6°=36 and 7°=49 , but we would like to know the answer to a few decimal
places. You might try typing something like the following.

>>> sqrt(42)
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
sqrt (42)
NameError: name 'sqgrt' is not defined

The run-time error states that there is no function named sqrt; however, it does exist. The problem is
that sqrt is not a built-in function like abs or round. In an effort to conserve memory, Python only
loads a small number of functions at start-up. All other functions are stored in modules, which are just
Python files that can be imported into your program.

To import the math module, use the import command.

>>> import math

It might seem like nothing has happened; however, Python has loaded all of the functions contained in
the math module into memory, so that they are available for you to use. If there was an error, say from
trying to load a module that does not exist, you would see an error as follows.

>>> import ABC
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
import ThisModuleDoesNotExist
ImportError: No module named ABC

This is not the case, however, so we know that the module was found. Unfortunately, if we try to
calculate the square root of 42, it still causes an error.

>>> sqrt (42)
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>
sqrt (42)
NameError: name 'sqgrt' is not defined

To reference a function that has been imported, we must prefix (attach to the front) the function with
the name of the module in which it is stored. This points Python toward the correct file. This might
seem like a strange requirement, since we imported the module and Python should know where it is,
but there are practical reasons for this decision.

>>> math.sqrt (42)
6.48074069840786

Finally, we get the answer we expected. Let’s round that two two decimals so that it is easier to read.

>>> round (math.sqrt (42), 2)
6.48

In the last example, we nested a function inside of another one. The value produced by the sgrt
function was used as an argument in the round function. This is very common in computer programs,
especially in Python. Instead of writing multiple commands across several lines, we can often combine
the commands into a single unified instruction.

Note that the square root function always returns a decimal answer, even if the result is an integer.

>>> math.sqgrt (9)
3.0

In addition to mathematical functions, the math module contains various constants too, such as n (pi)
and e (Euler’s number). Both constants are irrational numbers, so their values are only approximations.

>>> math.pi
3.141592653589793
>>> math.e
2.718281828459045

Trigonometric functions are also found in the math module; however, it is important to note that these
functions operate with radians, rather than degrees. For example, sin30 =0.5, but attempting this in
Python gives the following.

>>> math.sin (30)
-0.9880316240928618

To convert an angle from degrees to radians, use the radians function.

>>> math.radians (30)
0.5235987755982988

>>> math.sin (0.5235987755982988)
0.49999999999999994

It is not very efficient to have to cut-and-paste the decimal value 0.52..., so a better idea is to nest the
functions like we did earlier.

>>> math.sin(math.radians (30))
0.49999999999999994

Note that the value is not 0.5 is not quite what we expected it to be. This is because of the way in which
computers represent decimal values. They are not always precise, and are often subject to rounding
errors. For this reason, many financial institutions have laws in place that restrict or prohibit the use or
decimal values for calculation purposes.

Inverse trigonometric functions are possible as well. Sine inverse, often denoted as sin™ on calculators,
uses the older terminology arcsine, abbreviated in Python as asin. Again, note the slight inaccuracy.

>>> math.degrees (math.asin (0.5))
30.000000000000004

Logarithmic and exponential calculations can also be made using the functions in the math module. For
logarithms with a base of 10, use 10g10. For a specified base, you can use log instead. e* can be
computed using exp.

>>> math.logl0(100)
2.0
>>> math.log (8, 2)
3.0

Some other useful functions, dealing with integers, are the floor and ceil functions, which round
down and up respectively. These are typically denoted |[x| and [x]. Another useful function is for
factorials, which arise in many counting problems. n factorial is defined as
n!=nx(n-1)x(n—2)x...x2x1 .

>>> math.floor (4.9)

4

>>> math.ceil (3.1)

4

>>> math.factorial (4)
24

>>> 4*3*2*]

24

	Built-In Mathematical Functions
	Functions From the math Module

