
ICS3U: Input and Output

The Code Window
So far, the shell has been adequate for performing simple mathematical calculations; however, it is not
very efficient for entering larger programs. The code window is a better option, providing us with an
area in which we can enter an arbitrary amount of code. It also allows a programmer to save programs,
and to run them or modify them at later dates.

One thing to note about the code window is that it does not echo values like the shell does. Entering
the command 3+5 in the code window will produce no output when it is run. To see the results of such
calculations, we will need to use some additional functions.

Displaying Output
To output one or more values to the screen, use the built-in print function. The general format of
print is something like this:

print(objects, keyword options)

In its most basic form, print takes one or more values as arguments. The statement print(3, 4, 5)
will display the following in the shell.

3 4 5

Note that values must be separated by commas inside of print, and that values are separated by single
spaces in the output. Any object (a value, variable, function, and so on) can be output via print. Try
running the code below to see the output.

number = 10
animal = "dog"
print("My favourite number is", number, "and my favourite animal is a", animal)

Four arguments are present in the print statement: a literal string, a variable of type int, a second
literal string, and a variable of type str. All are output on a single line, separated by spaces. While the
literal strings were enclosed in double quotes, variables are not. Students sometimes think that all
values output via print must have quotes, but the following code should demonstrate why this is false.

number = 10
print(number)
print("number")

To change some of the default behaviours of print, you may specify some keyword options after the
values. All keyword options follow the format option_name = value. In the last example, the two
print statements resulted in two separate lines of output. We can change the end-of-line behaviour
using the end option.

print("All of this text ", end="")
print("is on the same line.")

In this case, the new end-of-line character is an empty string, so both statements are output on the
same line. This can be changed to any character, or sequence of characters, if desired.

print("This line ends with two dollar signs and a newline.", end="$$\n")
print("This is on separate line.")

In the example above, newline is represented as \n. This is called an escape character. They are often
used to represent special whitespace characters such as newlines, carriage returns (\r), and tabs (\t),
but they can also be used to represent control sequences such as backspace (\b). They can also be used
to display certain characters that would normally not be displayed in strings, such as quotes, double
quotes, and backslashes. Try the following print statements to see how they are replaced.

print("Use a backslash, \\, as part of an escape character.")
print("Tom bumped his arm on a rock. \"Ow!\" he cried out.")
print("'I love Hallowe\'en,' he said.")

Another keyword option is sep, which can alter the character that separates values. To suppress
spacing between values, use an empty string.

print("Ca", "na", "da", sep="")

This can be useful when several values need to be separated by a specific character, like a comma.

x=3
y=5
z=7
print(x, y, z, sep=",")

It can also be useful if you want to eliminate the pesky space that is inserted between a variable and a
period at the end of a sentence.

number = 2
print("A really nice number is ", number, ".", sep="")

Typecasting
We mentioned earlier that Python is a dynamically-typed language, and that data types can change as a
result of a calculation. Sometimes we want to change a variable’s data type manually. For example, we
have seen how concatenating an integer with a string results in a run-time error.

>>> "hello" + 3
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

Any numeric data type can be converted to a string using the str function.

>>> "hello" + str(3)
'hello3'

This explicit conversion from one data type to another is called typecasting. Conversions to other data
types can be achieved using additional functions such as int, float, list and so on.

Only certain strings can be converted to numeric types. Here are some examples that work.

>>> int("7")
7
>>> int("-9")
-9
>>> int(8.5)
8
>>> float("7")
7.0
>>> float(7)
7.0

Note that a float will lose all digits after the decimal point if it is converted to an int, as is the case in
the third example. Any int can be converted to a float. Here are some examples that do not work.

>>> int("123abc")
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '123abc'
>>> int("8.5")
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '8.5'
>>> int("7.0")
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '7.0'

The first conversion fails because there are non-numeric characters in the string. The second is
unsuccessful because 8.5 cannot be represented as an integer. Note that this is different behaviour than
converting from a float value of 8.5 to an integral value of 8. As we saw above, this “works” by
truncating all values after the decimal point. The third example is similar, but may be surprising, since
we as humans understand that 7.0 represents the same value as 7. The Python interpreter, on the other
hand, does not.

Obtaining User Input
Computers would not be nearly as useful as they are if they were unable to obtain and process user
input. Python can do this using the input function. The general format is something like this:

variable = input(prompt)

When you run a program and it encounters a call to the input function, the prompt will be displayed
in the shell, followed by a cursor. The program will wait for the user to enter something, followed by
the Enter (Return) key, before moving on to the next command. User input is assigned to the specified
variable. Try the following code, entering your name when prompted to do so.

name = input("What is your name? ")
print("Hello ", name, "!", sep="")

All input is interpreted as a string. This can cause a problem when attempting to perform mathematical
operations on user input. Below is code that attempts to double a user-entered number.

num = input("Enter a number: ")
double = num * 2
print(double, "is twice your number.")

The output, however, looks like this:

Enter a number: 10
1010 is twice your number.

Obviously, there is a logical error in the code. In this case, the error occurs on lie second line. This is
because the value stored in num is a string. When the multiplication operator is used with a string and
an integer, the string is repeated that many times, as in the following:

>>> "ha"*3
'hahaha'

To fix things, we can typecast num as an int.

num = input("Enter a number: ")
double = int(num) * 2
print(double, "is twice your number.")

This will produce the expected result.

Enter a number: 10
20 is twice your number.

A common approach is to typecast user input as it is read. The same result could have been achieved
via the following code, which would immediately assign an integral value to num.

num = int(input("Enter a number: "))
double = num * 2
print(double, "is twice your number.")

One important difference between the format of the print and input functions is that print allows
for multiple arguments, whereas input can only use a single string for its prompt. Attempting to use
multiple arguments in an input function causes a run-time error.

num1 = int(input("Enter an integer: "))
num2 = int(input("Enter an integer larger than ", num1, ": "))

Traceback (most recent call last):
 File "/home/Code/user_input.py", line 2, in <module>
 num2 = int(input("Enter an integer larger than ", num1, ": "))
TypeError: input expected at most 1 argument, got 3

One way to get around this limitation is to build a string first using concatenation, then use it as the
prompt in the input function.

num1 = int(input("Enter an integer: "))
prompt = "Enter an integer larger than " + str(num1) + ": "
num2 = int(input(prompt))

Remember that num1 needs to be typecast as a string, or we will receive a run-time error when
attempting to concatenate a string with an integer.

	The Code Window
	Displaying Output
	Typecasting
	Obtaining User Input

