EXPONENTIAL AND LOGARITHMIC FUNCTIONS	EXPONENTIAL AND LOGARITHMIC FUNCTION
	Logarithms
MHF4U: Advanced Functions	Recall that the inverse of an exponential function, $y = b^x$, swaps the domain with the range to produce $x = b^y$.
	To express this relationship, an alternative notation called <i>logarithmic notation</i> is used.
Logarithms	Relationship Between Exponents and Logarithms
J. Garvin	If $y = b^{-}$, $b > 0$ and $b \neq 1$, then $x = \log_b y$.
	For example, $100 = 10^2$, so $2 = \log_{10} 100$.
	Logarithms with a base of 10 are used quite frequently, and are often referred to as <i>common logarithms</i> .
	$\log_{10} x$ is often abbreviated $\log x$.
	J. Garvin — Logarithms
Slide 1/10	Slide 2/10
Side 1/10	Slide 2/10
Side 1/10 EXPONENTIAL AND LOGARITHMIC FUNCTIONS	SHde 2/10 EXPONENTIAL AND LOGARITHMIC FUNCTI
EXPONENTIAL AND LOGARITHMIC FUNCTIONS	SHde 2/10 EXPONENTIAL AND LOGARITHMIC FUNCTI Logarithms
EXPONENTIAL AND LOGARITHMIC FUNCTIONS Logarithms Example	Slide 2/10 EXPONENTIAL AND LOGARITHMIC FUNCTIN Logarithms Example
EXPONENTIAL AND LOGARITHMIC FUNCTIONS Logarithms Example Convert 3 ⁴ = 81 to logarithmic form.	Slide 2/10 EXPONENTIAL AND LOGARITHMIC FUNCTION Logarithms Example Convert $2^{\frac{1}{3}} = \sqrt[3]{2}$ to logarithmic form.
Side 1/10 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Logarithms Example Convert $3^4 = 81$ to logarithmic form. $b = 3, x = 4$ and $y = 81$, so $\log_3 81 = 4$.	EXPONENTIAL AND LOGARITHMIC FUNCTION Logarithms Example Convert $2^{\frac{1}{3}} = \sqrt[3]{2}$ to logarithmic form. $b = 2, x = \sqrt[3]{2}$ and $y = 2^{\frac{1}{3}}$, so $\log_2(\sqrt[3]{2}) = \frac{1}{3}$.
EXPONENTIAL AND LOGARITHMIC FUNCTIONS Logarithms Example Convert $3^4 = 81$ to logarithmic form. $b = 3, x = 4$ and $y = 81$, so $\log_3 81 = 4$. Example	EXPONENTIAL AND LOGARITHMIC FUNCT Logarithms Example Convert $2^{\frac{1}{3}} = \sqrt[3]{2}$ to logarithmic form. $b = 2, x = \sqrt[3]{2}$ and $y = 2^{\frac{1}{3}}$, so $\log_2(\sqrt[3]{2}) = \frac{1}{3}$. Example
EXPONENTIAL AND LOGARITHMIC FUNCTIONS Logarithms Example Convert $3^4 = 81$ to logarithmic form. $b = 3, x = 4$ and $y = 81$, so $\log_3 81 = 4$. Example Convert $5^{-2} = \frac{1}{25}$ to logarithmic form.	Side 2/10 EXPONENTIAL AND LOGARITHMIC FUNCTION Logarithms Example Convert $2^{\frac{1}{3}} = \sqrt[3]{2}$ to logarithmic form. $b = 2, x = \sqrt[3]{2}$ and $y = 2^{\frac{1}{3}}$, so $\log_2(\sqrt[3]{2}) = \frac{1}{3}$. Example Convert $(-2)^{\frac{1}{3}} = \sqrt[3]{-2}$ to logarithmic form.
EXPONENTIAL AND LOGARITHMIC FUNCTIONS Logarithms Example Convert $3^4 = 81$ to logarithmic form. $b = 3, x = 4$ and $y = 81$, so $\log_3 81 = 4$. Example Convert $5^{-2} = \frac{1}{25}$ to logarithmic form. $b = 5, x = -2$ and $y = \frac{1}{25}$, so $\log_5(\frac{1}{25}) = -2$.	Side 2/10 EXPONENTIAL AND LOGARITHMIC FUNCT Logarithms Example Convert $2^{\frac{1}{3}} = \sqrt[3]{2}$ to logarithmic form. $b = 2, x = \sqrt[3]{2}$ and $y = 2^{\frac{1}{3}}$, so $\log_2(\sqrt[3]{2}) = \frac{1}{3}$. Example Convert $(-2)^{\frac{1}{3}} = \sqrt[3]{-2}$ to logarithmic form. Since $b < 0$, there is no logarithmic equivalent. This is supported by the fact that the domain of a logarithmic function is $(0, \infty)$.
EXPONENTIAL AND LOGARITHMIC FUNCTIONS Logarithms Example Convert $3^4 = 81$ to logarithmic form. $b = 3, x = 4$ and $y = 81$, so $\log_3 81 = 4$. Example Convert $5^{-2} = \frac{1}{25}$ to logarithmic form. $b = 5, x = -2$ and $y = \frac{1}{25}$, so $\log_5(\frac{1}{25}) = -2$.	EXPONENTIAL AND LOGARITHMIC FUNCT Logarithms Example Convert $2^{\frac{1}{3}} = \sqrt[3]{2}$ to logarithmic form. $b = 2, x = \sqrt[3]{2}$ and $y = 2^{\frac{1}{3}}$, so $\log_2(\sqrt[3]{2}) = \frac{1}{3}$. Example Convert $(-2)^{\frac{1}{3}} = \sqrt[3]{-2}$ to logarithmic form. Since $b < 0$, there is no logarithmic equivalent. This is supported by the fact that the domain of a logarithmic function is $(0, \infty)$.

	EXPONENTIAL AND LOGARITHMIC FUNCTIONS
Logarithms	
Example	
Convert $\log_7 49 = 2$ to e	xponential form.
b = 3, $x = 2$ and $y = 49$	9, so $7^2 = 49$.
Example	
Convert $\log 1000 = 3$ to	exponential form.
b = 10, x = 3 and y = 1	1 000, so $10^3 = 1000$.
J. Garvin — Logarithms Slide 5/10	

Logarithms

To evaluate a logarithmic expression, it is often easier to rewrite it in exponential form.

XPONENTIAL AND LOGARITHMIC FUNCTIONS

Example

 $\mathsf{Evaluate}\,\log_2 32.$

Since b = 2 and y = 32, rewrite this as $2^x = 32$.

To determine the value of x, use mental calculations (if the values are small or "obvious") or exponent laws.

 $2^{x} = 32$ $2^{x} = 2^{5}$ x = 5

J. Garvin — Logarithms Slide 6/10

EXPONENTIAL AND LOGARITHMIC FUNCTIONS	EXPONENTIAL AND LOGARITHMIC FUNC
Logarithms	Logarithms
Example	Example
Evaluate $\log_3 \frac{1}{2}$.	Evaluate log 50.
Since $b = 3$ and $y = \frac{1}{81}$, rewrite this as $3^x = \frac{1}{81}$. $3^x = \frac{1}{81}$ $3^x = \frac{1}{3^4}$	Since $b = 10$ and $y = 50$, rewrite this as $10^{\times} = 50$.
	It is not possible to express 50 as a power of 10, so we cannot use exponent laws at this stage.
	You can use the log button on a scientific calculator to obtain an approximate answer, 1.69897.
$3^{A} = 3^{-4}$ $x = -4$	
J. Garvin — Logarithms	J. Garvin — Logarithms
Slide 7/10	Slide 8/10

