

It is possible to enlarge or reduce the magnitude of a vector by some constant factor.

Scalar Multiplication

Given vector \vec{v} and scalar k, $k\vec{v}$ is a vector that is |k| times as long.

Note that the direction may change, depending on the sign of the scalar k.

- If k > 0, $k\vec{v}$ has the same direction as \vec{v} .
- If k < 0, $k\vec{v}$ has the opposite direction as \vec{v} .

Two vectors that form a straight line are *collinear*.

some non-zero scalar k such that $\vec{u} = k\vec{v}$.

they have opposite directions.

Two vectors \vec{u} and \vec{v} are collinear if, and only if, there is

Reason: If two vectors \vec{u} and \vec{v} are collinear, they are parallel. This means that either \vec{u} and \vec{v} have the same direction, or

• If k = 0, $k\vec{v}$ is the zero vector.

J. Garvin — Multiplying Vectors By Scalars Slide 3/19

Collinear Vectors

Collinear Vectors

then k > 0.

Collinear Vectors

Example

Example

Describe a vector \vec{b} that is collinear to \vec{a} if it has the opposite direction and the same magnitude.

Since only the direction is reversed, k = -1.

This produces the vector \vec{b} such that $|\vec{b}| = 5$ with a bearing of 135° (since $135^{\circ} + 180^{\circ} = 315^{\circ}$).

Therefore, $\vec{b} = -\vec{a}$.

If they have opposite directions, and different magnitudes, then k < 0.

If they have the same direction, but different magnitudes,

If the magnitudes are the same, then k = 1 or k = -1, depending on the direction. J. Garvin — Multiplying Vectors By Scalars Slide 5/19

J. Garvin — Multiplying Vectors By Scalars Slide 6/19

Vector \vec{a} has a magnitude of 5, with a bearing of 315° .

4 cm

8 cm

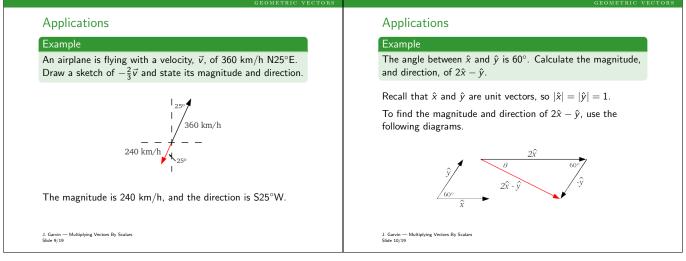
20

 $\frac{2 \text{ cm}}{\sqrt[4]{(1/2)a}}$

J. Garvin — Multiplying Vectors By Scalars Slide 4/19

Given vector \vec{a} , draw $2\vec{a}$ and $-\frac{1}{2}\vec{a}$.

GEOMETRIC VECTORS	GEOMETRIC VECT
Collinear Vectors	Collinear Vectors
Example	Example
Vector \vec{a} has a magnitude of 5, with a bearing of 315°. Describe a vector \vec{b} that is collinear to \vec{a} if it has the same direction and a magnitude greater than 10.	Vector \vec{a} has a magnitude of 5, with a bearing of 315°. Describe a vector \vec{b} that is collinear to \vec{a} if it has the opposite direction and a magnitude smaller than 4.
Since $ \vec{b} > 10$, $k(5) > 10$, and $k > 2$.	Since $ ec{b} <$ 4, $-4 < k(5) <$ 0, and $-rac{4}{5} < k <$ 0.
Using $k = 3$ produces \vec{b} such that $ \vec{b} = 15$ with a bearing of 315° .	Using $k = -\frac{3}{5}$ produces \vec{b} such that $ \vec{b} = 3$ with a bearing of 135°.
Therefore, $\vec{b} = 3\vec{a}$.	Therefore, $ec{b}=-rac{3}{5}ec{a}$.
J. Garvin — Multiplying Vectors By Scalars Slide 7/19	J. Garvin — Multiplying Vectors By Scalars Slide 8/19
GEOMETRIC VECTORS	



Applications

Use the cosine law to find the magnitude.

$$\begin{aligned} |2\hat{x} - \hat{y}| &= \sqrt{|2\hat{x}|^2 + |-\hat{y}|^2 - 2 \cdot |2\hat{x}| \cdot |-\hat{y}| \cdot \cos(60^\circ)} \\ &= \sqrt{2^2 + 1^2 - 2 \cdot 2 \cdot 1 \cdot \frac{1}{2}} \\ &= \sqrt{3} \end{aligned}$$

Use the sine law to find the angle, θ , relative to \hat{x} . $\sin \theta = \sin 60^{\circ}$

$$\frac{\sin \theta}{|-\vec{y}|} = \frac{\sin 60^{\circ}}{|2\vec{x} - \vec{y}|}$$
$$\theta = \sin^{-1} \left(\frac{1 \cdot \sin 60^{\circ}}{\sqrt{3}}\right)$$
$$\theta = 30^{\circ}$$

J. Garvin — Multiplying Vectors By Scalars Slide 11/19

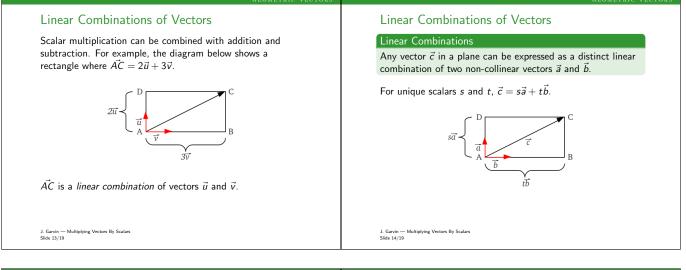
Multiplying a Vector By a Scalar

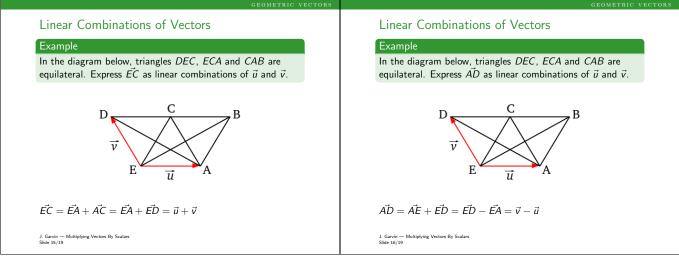
GEOMETRIC VECTORS

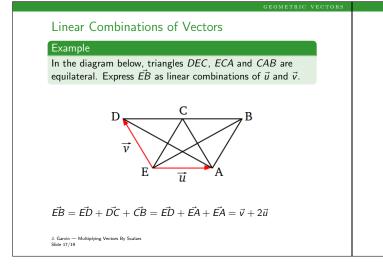
Given vectors \vec{u} and \vec{v} and scalar k, then $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$.

$$k(\vec{u} + \vec{v}) = \underbrace{(\vec{u} + \vec{v}) + (\vec{u} + \vec{v}) + \dots + (\vec{u} + \vec{v})}_{k \text{ times}}$$
$$= \underbrace{\vec{u} + \vec{u} + \dots + \vec{u}}_{k \text{ times}} + \underbrace{\vec{v} + \vec{v} + \dots + \vec{v}}_{k \text{ times}}$$
$$= k\vec{u} + k\vec{v}$$

J. Garvin — Multiplying Vectors By Scalars Slide 12/19







Linear Combinations of Vectors

```
Example
If \vec{u} = 3\vec{x} - 2\vec{y} and \vec{v} = 2\vec{x} - 5\vec{y}, express 3\vec{u} - 4\vec{v} in terms of \vec{x} and \vec{y}.
```

GEOMETRIC VECTORS

Substitute the definitions of \vec{u} and \vec{v} into the expression $3\vec{u} - 4\vec{v}$.

$$3\vec{u} - 4\vec{v} = 3(3\vec{x} - 2\vec{y}) - 4(2\vec{x} - 5\vec{y})$$

= $9\vec{x} - 6\vec{y} - 8\vec{x} + 20\vec{y}$
= $\vec{x} + 14\vec{y}$

J. Garvin — Multiplying Vectors By Scalars Slide 18/19

