MCV4U: Calculus & Vectors

The Derivative of a Function

J. Garvin

Slope of a Tangent

Recar

Determine the slope of the tangent to $f(x) = 5x^2$ when x = -2.

Use the difference quotient with x = -2 and f(-2) = 20.

$$m_{\text{tangent}} = \frac{5(-2+h)^2 - 20}{h}$$

$$= \frac{5(4-4h+h^2) - 20}{h}$$

$$= \frac{-20h+5h^2}{h}$$

$$= -20+5h$$

As $h\to 0$, $-20+5h\to -20$. Therefore, the slope of the tangent to $f(x)=5x^2$ at x=-2 is -20. J. Garvin — The Derivative of a Function Slide 2/3

LIMIT

The Derivative of a Function

In the previous example, we let $h \to 0$ to create an infinitesimally small interval for our secant, essentially creating a tangent at x=-2.

We recognize this as the *limit* of the difference quotient as $h \rightarrow 0$.

This gives us a more formal definition using limits.

Limit Definition of the Derivative

For a function y = f(x), the *derivative* may be expressed as:

•
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 in Lagrange notation, or

•
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 in Leibniz notation

J. Garvin — The Derivative of a Function Slide 3/13

The Derivative of a Function

The derivative is an expression that can be used to evaluate the instantaneous rate of change at a given point on a curve, or the slope of the tangent at that point.

The process of determining the derivative of a function is called *differentiation*.

If the derivative can be found at a given point, then the function is *differentiable* at that point. It is not always possible to determine the derivative of a function for all points on its domain.

Using this limit definition of the derivative is sometimes referred to as differentiating using first principles.

J. Garvin — The Derivative of a Function Slide 4/13

The Derivative of a Function

Example

Determine the derivative of $f(x) = 3x^2 + 5$ at x = 2.

We can use the limit definition of the derivative to verify this in one of two ways:

- Substitute x=2 into the expression, and find the derivative for that point alone, or
- Determine a general expression for the derivative, and evaluate it after-the-fact for $x=2\,$

If a question asks for a one-off answer, the first method is fine. For applications that require further analysis, or ask for the derivative at multiple points, the second is better.

J. Garvin — The Derivative of a Function

The Derivative of a Function

Using the first method, substitute x=2 and f(2)=17 into the expression.

$$f'(2) = \lim_{h \to 0} \frac{3(2+h)^2 + 5 - 17}{h}$$

$$= \lim_{h \to 0} \frac{3(4+4h+h^2) - 12}{h}$$

$$= \lim_{h \to 0} \frac{12h + 3h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(12+3h)}{h}$$

$$= \lim_{h \to 0} (12+3h)$$

$$= \lim_{h \to 0} 12 + 3\lim_{h \to 0} h$$

J. Garvin — The Derivative of a Function

The Derivative of a Function

Using the second method, expand and simplify.

the second method, expand and simplify.
$$f'(x) = \lim_{h \to 0} \frac{[3(x+h)^2 + 5] - [3x^2 + 5]}{h}$$

$$= \lim_{h \to 0} \frac{3(x^2 + 2xh + h^2) + 5 - 3x^2 - 5}{h}$$

$$= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(6x + 3h)}{h}$$

$$= \lim_{h \to 0} (6x + 3h)$$

$$= 6 \lim_{h \to 0} x + 3 \lim_{h \to 0} h$$

$$= 6x$$

J. Garvin — The Derivative of a Function Slide 7/13

The Derivative of a Function

Now that we have a general expression for f'(x), we can use it to evaluate the rate of change when x = 2.

$$f'(2) = 6(2)$$

= 12

Both methods found an instantaneous rate of change of 12 when x = 2

If we needed to evaluate the instantaneous rate of change at other points on the curve, say at x = 10, the second method tells us that f'(10) = 6(10) = 60.

Had we used the first method, we would have to calculate f'(10) from scratch.

The Derivative of a Function

Determine the instantaneous rates of change of $y = \sqrt{x}$ when x = 4 and x = 9.

We need to find both
$$\left.\frac{dy}{dx}\right|_{x=4}$$
 and $\left.\frac{dy}{dx}\right|_{x=9}$.
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})}$$

J. Garvin — The Derivative of a Functi Slide 9/13

The Derivative of a Function

Recall that radicals can be written in exponential form.

$$\begin{split} \frac{dy}{dx} &= \lim_{h \to 0} \frac{1}{\left(x + h\right)^{\frac{1}{2}} + x^{\frac{1}{2}}} \\ &= \frac{\lim_{h \to 0} 1}{\left(\lim_{h \to 0} x + \lim_{h \to 0} h\right)^{\frac{1}{2}} + \left(\lim_{h \to 0} x\right)^{\frac{1}{2}}} \\ &= \frac{1}{x^{\frac{1}{2}} + x^{\frac{1}{2}}} \\ &= \frac{1}{2\sqrt{x}} \text{ or } \frac{1}{2}x^{-\frac{1}{2}} \end{split}$$

Therefore, $\left. \frac{dy}{dx} \right|_{x=4} = \frac{1}{2\sqrt{4}} = \frac{1}{4} \text{ and } \left. \frac{dy}{dx} \right|_{x=9} = \frac{1}{2\sqrt{9}} = \frac{1}{6}$

The Derivative of a Function

Example

Determine the equation of the tangent to $f(x) = \frac{1}{x}$ at x = 5.

The slope of the tangent at x = 5 is given by f'(5).

$$f'(5) = \lim_{h \to 0} \frac{\frac{1}{5+h} - \frac{1}{5}}{h}$$

$$= \lim_{h \to 0} \frac{5 - (5+h)}{5h(5+h)}$$

$$= \lim_{h \to 0} \frac{-1}{5(5+h)}$$

$$= \frac{\lim_{h \to 0} (-1)}{\lim_{h \to 0} 25 + \lim_{h \to 0} h}$$

The Derivative of a Function

When x = 5, $f(5) = \frac{1}{5}$, so the point of tangency is $(5, \frac{1}{5})$.

Use the slope and point to find the equation of the tangent.

$$y = -\frac{1}{25}(x - 5) + \frac{1}{5}$$
$$= -\frac{1}{25}x + \frac{1}{5} + \frac{1}{5}$$
$$= -\frac{1}{25}x + \frac{2}{5}$$

Therefore, the tangent to $f(x) = \frac{1}{x}$ at x = 5 has the equation $y = -\frac{1}{25}x + \frac{2}{5}$.

