	TRANSFORMA
	The Inverse of a Function
MCR3U: Functions	A relation associates elements in the domain (independent variable) with those in the range (dependent variable).
	When the dependent and independent variables (usually x and y) are swapped, the resulting relation is the <i>inverse</i> of the original relation.
The Inverse of a Function	Since functions are special cases of relations, the same definition applies.
J. Garvin	Swapping the two variables means that the domain of a function becomes the range of its inverse, and the range of a function becomes the domain of its inverse.
	For example, if a function has a domain of $\{x \in R \mid x > 4\}$ and a range of $\{f(x) \in R \mid x \le 2\}$, then the inverse will have a domain of $\{x \in R \mid x \le 2\}$ and a range of $\{f(x) \in R \mid x > 4\}$.
Side 1/17	J. Garvin — The inverse of a Function Silde 2/17
TRANSFORMATIONS	TRANSFORMA
The Inverse of a Function	The Inverse of a Function
Example	Graphically, the inverse of a function is a reflection in the line $y = x$. This makes it easy to graph a function's inverse by swapping
Given the relation $R = \{(3, 2), (-1, 4), (5, 0)\}$ Determine its	
inverse, <i>I</i> , and state the domain and range of <i>I</i> .	
inverse, <i>I</i> , and state the domain and range of <i>I</i> . Swapping the values of <i>x</i> and <i>y</i> gives the inverse relation $I = \{(2, 3), (4, -1), (0, 5)\}$	the x - and y -coordinates for every point, and plotting the resulting new points.
Swapping the values of x and y gives the inverse relation $I = \{(2,3), (4,-1), (0,5)\}.$ Since the domain and range of R are $D : \{3,-1,5\}$ and $R : \{2,4,0\}$, the domain and range of I are $D : \{2,4,0\}$ and $R : \{3,-1,5\}.$	the x- and y-coordinates for every point, and plotting the resulting new points. This is often the best method to use when given a graph.
inverse, <i>I</i> , and state the domain and range of <i>I</i> . Swapping the values of <i>x</i> and <i>y</i> gives the inverse relation $I = \{(2,3), (4,-1), (0,5)\}$. Since the domain and range of <i>R</i> are $D : \{3,-1,5\}$ and $R : \{2,4,0\}$, the domain and range of <i>I</i> are $D : \{2,4,0\}$ and $R : \{3,-1,5\}$.	the <i>x</i> - and <i>y</i> -coordinates for every point, and plotting the resulting new points. This is often the best method to use when given a graph.

The Inverse of a Function

J. Garvin — The Inverse of a Function Slide 4/17

Example Graph the function $f(x) = (x - 3)^2 - 1$ and its inverse.

The Inverse of a Function

Since a horizontal line can be drawn on the graph that will intersect the function more than once, the inverse of the function is *not* a function itself.

The Inverse of a Function

It is possible to determine the equation of a function's inverse by swapping all instances of the independent and dependent variable.

Once swapped, isolate the new dependent variable.

We use the notation $f^{-1}(x)$ to denote the inverse of a function.

If the inverse is not a function itself, we typically do not use this notation.

J. Garvin — The Inverse of a Function Slide 10/17

TRANSPORMATIONSThe Inverse of a FunctionExampleThe Inverse of a FunctionDetermine the equation of the inverse of $f(x) = \frac{2}{x-3}$ $x = \frac{2}{y-3}$ $y - 3 = \frac{2}{x}$ $y - \frac{2}{x} + 3$ The equation of the inverse is $f^{-1}(x) = \frac{2}{x} + 3$.The equation of the inverse is $f^{-1}(x) = \frac{2}{x} + 3$.The equation of the inverse of a function $x = \frac{1}{y-3}$ The equation of the inverse is $f^{-1}(x) = \frac{2}{x} + 3$.The equation of the inverse is $y = 2 \pm \sqrt{\frac{x+4}{3}} = y$ The equation of the inverse of a functionLigning colspan="2">Inverse of a function $x = \frac{1}{y-3}$ The equation of the inverse is $y = 2 \pm \sqrt{\frac{x+4}{3}}$.I device - The hourse of a functionMathematical functionInterview of a function

The Inverse of a Function

Sometimes it is necessary to state restrictions on the domain of the inverse, such that it corresponds to the range of the original function.

For example, squaring and square-rooting are inverse operations. For this reason, when $f(x) = x^2$ is reflected in the line y = x, it looks very similar to $g(x) = \sqrt{x}$.

The one difference, however, is that $g(x) = \sqrt{x}$ is only one half of the graph of $f(x) = x^2$.

If we restrict the domain of $f(x) = x^2$ such that $x \le 0$, then its inverse is $g(x) = \sqrt{x}$.

The Inverse of a Function

Determine the equation of the inverse of $h(x) = -2\sqrt{x-5} + 1$, and state restrictions on its domain.

$$\begin{aligned} x &= -2\sqrt{y-5} + 1\\ x-1 &= -2\sqrt{y-5}\\ -\frac{x-1}{2} &= \sqrt{y-5}\\ \left(\frac{x-1}{2}\right)^2 &= y-5\\ \left(\frac{x-1}{2}\right)^2 + 5 &= y \end{aligned}$$

J. Garvin — The Inverse of a Function Slide 14/17

The Inverse of a Function

J. Garvin — The Inverse of a Function Slide 13/17

The domain and range of h(x) are $\{x \in R \mid x \ge 5\}$ and $\{h(x) \in R \mid h(x) \le 1\}$ respectively.

The range becomes the domain for the inverse.

Therefore, the equation of the inverse is $h^{-1}(x) = \left(\frac{x-1}{2}\right)^2 + 5$, with domain $\{x \in R \mid x \leq 1\}$ and range $\{h^{-1}(x) \in R \mid h^{-1}(x) \geq 5\}$.

The solid lines show the function (blue) and its inverse (green), while the dotted green line shows how the graph of $h^{-1}(x) = \left(\frac{x-1}{2}\right)^2 + 5$ would continue if the domain was not limited.

J. Garvin — The Inverse of a Function Slide 15/17

